Analysis, numerics, and implementation of Kinetic-Continuum coupling using Lattice-Boltzmann methods

Aachen (2018, 2019) [Dissertation / PhD Thesis]

Page(s): 1 Online-Ressource (xvi, 330 Seiten) : Illustrationen

Abstract

The direct simulation of the acoustic far-field generated by turbulent flows comprises very different scales, from the Kolmogorov scale for the turbulent flow to the far-field of acoustics. The disparity of these scales is further increased if porous materials are introduced as silencers. In order to allow for simulations of real world problems, a coupled approach applying appropriate solvers to the turbulent near-field and the acoustic far-field is required. This thesis is part of an effort applying a Lattice-Boltzmann solver solving the weakly compressible Navier-Stokes equations to the turbulent flow and a very-high-order Discontinuous Galerkin solver solving the linearized Euler equations to the acoustic far-field. A two-step coupling methodology, reducing the viscosity on the Lattice-Boltzmann level with subsequent coupling to macroscopic quantities on the Discontinuous Galerkin level, and corresponding building blocks are proposed. For this, consistent Lattice-Boltzmann methods for the linearized Navier-Stokes and lineraized Euler equations are developed for compressible flows with vanishing background velocity and isothermal flows with and without background velocity. A priori stability results are found for compressible and isothermal flows with vanishing background velocity and for inviscid, isothermal flows with background velocity and backed by numerical results. Additional novel Lattice-Boltzmann methods for isothermal flows with background velocity are presented. A consistent approach for gradual reduction of the viscosity on the Lattice-Boltzmann level is derived and numerically confirmed. A strategy for approximation of spatial derivatives of macroscopic from mesoscopic quantities is presented but found to suffer from problematic error constants.

Authors

Authors

Otte, Philipp Joachim

Advisors

Frank, Martin
Roller, Sabine
Torrilhon, Manuel

Identifier

  • REPORT NUMBER: RWTH-2019-04645

Downloads