Diskrete Mathematik
Forschungsbereich: Diskrete Mathematik
Forschungsgegenstand der Diskreten Mathematik sind die endlichen oder abzählbar unendlichen mathematischen Strukturen. In unserer Fachgruppe sind die folgenden Schwerpunkte vertreten:
Diskrete Optimierung (Ganzzahlige Lineare Optimierung, Optimierung auf Graphen und Netzwerken, Robuste Optimierung, Entwurf und Analyse von Heuristiken, Komplexitätstheorie), Graphentheorie (strukturelle und algorithmische Probleme in Graphen und Digraphen), Kombinatorik (Anzahlbestimmung, exakt und asymptotisch),
Informationstheorie (Codes, Suchprobleme), Spieltheorie.
Beispiele für Themen von Masterarbeiten:
- Effiziente Fabrikplanung durch optimierte Anordnung der Arbeitsvorgänge.
- Finden einer azyklischen Orientierung eines Graphen.
- Der Kegel der konvexen Funktionen mit endlichem Definitionsbereich.
- Essen auf Rädern–robuste Ansätze, exakte Algorithmen und Fallstudien.
- Gallai-Edmonds Zerlegung in balancierten Hypergraphen.
- Eine Analyse von Kryptosystemen, die auf dem Rucksackproblem basieren.
- Monotonie von Scheduling Algorithmen
- Ganzzahlige Optimierungsansätze zur Planung von Autobahnsanierungsmaßnahmen
An diesem Schwerpunktbereich beteiligte Professoren:
Name | Einheit |
---|---|
Frau Univ.-Prof. Dr. Christina Büsing | Lehrstuhl II für Mathematik |
Herr Univ.-Prof. Dr. Yubao Guo | Lehrstuhl C für Mathematik |
Herr Univ.-Prof. Dr. Arie Koster | Lehrstuhl II für Mathematik |
Herr Univ.-Prof. Dr. Marco Lübbecke | Lehrstuhl für Operations Research Fakultät für Wirtschaftswissenschaften |
Frau Univ.-Prof. Dr. Britta Peis | Lehrstuhl für Management Science Fakultät für Wirtschaftswissenschaften |
Herr Univ.-Prof. Dr. Oliver Schaudt | Lehrstuhl C für Mathematik |
Herr Univ.-Prof. Dr. Eberhard Triesch | Lehrstuhl II für Mathematik |
Empfohlene Lehrveranstaltungen
Graphentheorie I, Optimierung B, Diskrete Mathematik I, Ganzzahlige Lineare Optimierung.